16,212 research outputs found

    3D printing endobronchial models for surgical training and simulation

    Get PDF
    Lung cancer is the leading cause of cancer-related deaths. Many methods and devices help acquire more accurate clinical and localization information during lung interventions and may impact the death rate for lung cancer. However, there is a learning curve for operating these tools due to the complex structure of the airway. In this study, we first discuss the creation of a lung phantom model from medical images, which is followed by a comparison of 3D printing in terms of quality and consistency. Two tests were conducted to test the performance of the developed phantom, which was designed for training simulations of the target and ablation processes in endochonchial interventions. The target test was conducted through an electromagnetic tracking catheter with navigation software. An ablation catheter with a recently developed thermochromic ablation gel conducted the ablation test. The results of two tests show that the phantom was very useful for target and ablation simulation. In addition, the thermochromic gel allowed doctors to visualize the ablation zone. Many lung interventions may benefit from custom training or accuracy with the proposed low-cost and patient-specific phantom

    Photometry of SN 2002ic and Implications for the Progenitor Mass-Loss History

    Full text link
    We present new pre-maximum and late-time optical photometry of the Type Ia/IIn supernova 2002ic. These observations are combined with the published V-band magnitudes of Hamuy et al. (2003) and the VLT spectrophotometry of Wang et al. (2004) to construct the most extensive light curve to date of this unusual supernova. The observed flux at late time is significantly higher relative to the flux at maximum than that of any other observed Type Ia supernova and continues to fade very slowly a year after explosion. Our analysis of the light curve suggests that a non-Type Ia supernova component becomes prominent ∌20\sim20 days after explosion. Modeling of the non-Type Ia supernova component as heating from the shock interaction of the supernova ejecta with pre-existing circumstellar material suggests the presence of a ∌1.71015\sim1.7 10^{15} cm gap or trough between the progenitor system and the surrounding circumstellar material. This gap could be due to significantly lower mass-loss ∌15(vw/10km/s)−1\sim15 (v_w/10 km/s)^{-1} years prior to explosion or evacuation of the circumstellar material by a low-density fast wind. The latter is consistent with observed properties of proto-planetary nebulae and with models of white-dwarf + asymptotic giant branch star progenitor systems with the asymptotic giant branch star in the proto-planetary nebula phase.Comment: accepted for publication in Ap

    3-D Models of Embedded High-Mass Stars: Effects of a Clumpy Circumstellar Medium

    Full text link
    We use 3-D radiative transfer models to show the effects of clumpy circumstellar material on the observed infrared colors of high mass stars embedded in molecular clouds. We highlight differences between 3-D clumpy and 1-D smooth models which can affect the interpretation of data. We discuss several important properties of the emergent spectral energy distribution (SED): More near-infrared light (scattered and direct from the central source) can escape than in smooth 1-D models. The near- and mid-infrared SED of the same object can vary significantly with viewing angle, depending on the clump geometry along the sightline. Even the wavelength-integrated flux can vary with angle by more than a factor of two. Objects with the same average circumstellar dust distribution can have very different near-and mid-IR SEDs depending on the clump geometry and the proximity of the most massive clump to the central source. Although clumpiness can cause similar objects to have very different SEDs, there are some observable trends. Near- and mid-infrared colors are sensitive to the weighted average distance of clumps from the central source and to the magnitude of clumpy density variations (smooth-to-clumpy ratio). Far-infrared emission remains a robust measure of the total dust mass. We present simulated SEDs, colors, and images for 2MASS and Spitzer filters. We compare to observations of some UCHII regions and find that 3-D clumpy models fit better than smooth models. In particular, clumpy models with fractal dimensions in the range 2.3-2.8, smooth to clumpy ratios of <50%, and density distributions with shallow average radial density profiles fit the SEDs best.Comment: accepted to ApJ; version with full-res figures: http://www.astro.virginia.edu/~ri3e/clumpy3d.pd

    Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone

    Get PDF
    A bright ÎŒm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 Όm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications

    A Blind Search for Magnetospheric Emissions from Planetary Companions to Nearby Solar-type Stars

    Full text link
    This paper reports a blind search for magnetospheric emissions from planets around nearby stars. Young stars are likely to have much stronger stellar winds than the Sun, and because planetary magnetospheric emissions are powered by stellar winds, stronger stellar winds may enhance the radio luminosity of any orbiting planets. Using various stellar catalogs, we selected nearby stars (<~ 30 pc) with relatively young age estimates (< 3 Gyr). We constructed different samples from the stellar catalogs, finding between 100 and several hundred stars. We stacked images from the 74-MHz (4-m wavelength) VLA Low-frequency Sky Survey (VLSS), obtaining 3\sigma limits on planetary emission in the stacked images of between 10 and 33 mJy. These flux density limits correspond to average planetary luminosities less than 5--10 x 10^{23} erg/s. Using recent models for the scaling of stellar wind velocity, density, and magnetic field with stellar age, we estimate scaling factors for the strength of stellar winds, relative to the Sun, in our samples. The typical kinetic energy carried by the stellar winds in our samples is 15--50 times larger than that of the Sun, and the typical magnetic energy is 5--10 times larger. If we assume that every star is orbited by a Jupiter-like planet with a luminosity larger than that of the Jovian decametric radiation by the above factors, our limits on planetary luminosities from the stacking analysis are likely to be a factor of 10--100 above what would be required to detect the planets in a statistical sense. Similar statistical analyses with observations by future instruments, such as the Low Frequency Array (LOFAR) and the Long Wavelength Array (LWA), offer the promise of improvements by factors of 10--100.Comment: 11 pages; AASTeX; accepted for publication in A

    Nonequilibrium molecular dynamics simulation of rapid directional solidification

    Full text link
    We present the results of non-equilibrium molecular dynamics simulations for the growth of a solid binary alloy from its liquid phase. The regime of high pulling velocities, VV, for which there is a progressive transition from solute segregation to solute trapping, is considered. In the segregation regime, we recover the exponential form of the concentration profile within the liquid phase. Solute trapping is shown to settle in progressively as VV is increased and our results are in good agreement with the theoretical predictions of Aziz [J. Appl. Phys. {\bf 53}, 1158 (1981)]. In addition, the fluid advection velocity is shown to remain directly proportional to VV, even at the highest velocities considered here (V≃10V\simeq10ms−1^{-1}).Comment: Submitted to Phys. Rev.

    2-D Radiative Transfer in Protostellar Envelopes: I. Effects of Geometry on Class I Sources

    Full text link
    We present 2-D radiation transfer models of Class I Protostars and show the effect of including more realistic geometries on the resulting spectral energy distributions and images. We begin with a rotationally flattened infalling envelope as our comparison model, and add a flared disk and bipolar cavity. The disk affects the spectral energy distribution most strongly at edge-on inclinations, causing a broad dip at about 10 um (independent of the silicate feature) due to high extinction and low scattering albedo in this wavelength region. The bipolar cavities allow more direct stellar+disk radiation to emerge into polar directions, and more scattering radiation to emerge into all directions. The wavelength-integrated flux, often interpreted as luminosity, varies with viewing angle, with pole-on viewing angles seeing 2-4 times as much flux as edge-on, depending on geometry. Thus, observational estimates of luminosity should take into account the inclination of a source. The envelopes with cavities are significantly bluer in near-IR and mid-IR color-color plots than those without cavities. Using 1-D models to interpret Class I sources with bipolar cavities would lead to an underestimate of envelope mass and an overestimate of the implied evolutionary state. We compute images at near-, mid-, and far-IR wavelengths. We find that the mid-IR colors and images are sensitive to scattering albedo, and that the flared disk shadows the midplane on large size scales at all wavelengths plotted. Finally, our models produce polarization spectra which can be used to diagnose dust properties, such as albedo variations due to grain growth. Our results of polarization across the 3.1 um ice feature agree well with observations for ice mantles covering 5% of the radius of the grains.Comment: Accepted for publication in ApJ, 37 pages, 13 figures (several figures reduced in quality; find original version at http://gemelli.colorado.edu/~bwhitney/preprints.html
    • 

    corecore